### What is an Earthquake? (Long Answer)

An **earthquake** is a **sudden and violent shaking or trembling of the Earth's surface** caused by the **sudden release of energy** stored in the Earth's crust. This energy release occurs due to the movement of **tectonic plates**, volcanic activity, or other underground disturbances. Earthquakes are natural phenomena that can cause significant damage to life and property, depending on their magnitude, depth, and location.

### 1. Causes of Earthquakes

The Earth's outer layer, called the **crust**, is made up of several large pieces known as **tectonic plates**. These plates are constantly moving very slowly over the molten layer beneath (the mantle). When these plates **collide**, **slide past**, or **move away** from each other, stress builds up along their boundaries. When this stress exceeds the strength of rocks, it is released in the form of **seismic waves**, resulting in an earthquake.

#### Main causes include:

- **Tectonic movements:** Movement of plates at fault lines (most common cause).
- Volcanic activity: Pressure from magma can trigger earthquakes near volcanoes.
- **Human activities:** Activities like mining, dam construction, and oil drilling can also induce minor earthquakes.
- Collapse earthquakes: Occur due to the collapse of underground caves or mines.

#### 2. Important Terms Related to Earthquakes

- Focus (Hypocenter): The point inside the Earth where the earthquake originates.
- **Epicenter:** The point on the Earth's surface directly above the focus; it experiences the strongest shaking.
- **Seismic Waves:** The waves of energy that travel through the Earth's crust during an earthquake. They are of three main types:
  - P-waves (Primary waves): Fastest waves that travel through solids, liquids, and gases.
  - S-waves (Secondary waves): Slower waves that travel only through solids.
  - Surface waves: Cause most of the destruction on the surface.

#### 3. Measurement of Earthquakes

- **Seismograph:** An instrument used to record and measure the vibrations of an earthquake.
- **Richter Scale:** Measures the **magnitude** (strength) of an earthquake on a logarithmic scale from 1 to 10.
- Mercalli Scale: Measures the intensity (damage caused) of an earthquake based on observations.

# 4. Effects of Earthquakes

Earthquakes can have both immediate and long-term effects:

#### (a) Destructive Effects:

- Loss of lives and property.
- Collapse of buildings, bridges, and roads.
- Landslides and avalanches in hilly areas.
- **Tsunamis** when earthquakes occur under the sea.
- Fires and explosions due to ruptured gas lines or electrical faults.

#### (b) Constructive Effects:

- Can create **new landforms**, such as faults, mountains, and rift valleys.
- Help scientists study the structure of the Earth's interior.

### 5. Distribution of Earthquakes

Earthquakes mostly occur along **plate boundaries**. The major earthquake zones of the world are:

- The Circum-Pacific Belt (Ring of Fire) around the Pacific Ocean.
- The Mid-Atlantic Ridge along the Atlantic Ocean.
- The Himalayan Region due to the collision of the Indian and Eurasian plates.

# **6. Safety Measures During Earthquakes**

To minimize loss of life and property, people should:

- Take shelter under strong furniture or door frames.
- Stay away from windows, glass, and heavy objects.
- Avoid elevators; use stairs.
- Keep emergency kits ready (first aid, food, water, torch, etc.).
- Follow earthquake-resistant building designs in seismic-prone zones.

#### 7. Conclusion

In conclusion, an **earthquake** is a natural geological event resulting from movements within the Earth's crust. While it cannot be prevented, its **impact can be reduced** through proper planning, awareness, and disaster management. Understanding the causes and effects of earthquakes helps in building safer communities and preparing effectively for future occurrences.